Radial Basis Function Neural Network Metamodelling for 2-d Resistivity Mapping
نویسندگان
چکیده
Since the last few decades, electrical methods have been widely used in geophysical surveying to obtain high-resolution information about subsurface conditions. Resistivity is an important parameter in judging the ground properties, especially detecting buried objects of anomalous conductivity. Electrical DC resistivity sounding is the commonly used technique to obtain the apparent 2-D resistivity of the region under investigation. Acquiring the true resistivity from collected data remains a complex task due to nonlinearity particularly due to contrasts distributed in the region. In this work, a radial basis function neural network metamodelling approach is proposed to solve the 2-D resistivity inverse problem. The model was trained with synthetic data samples obtained for a homogeneous medium of 100Ω.m. The neural network was then tested on another set of synthetic data. The results show the ability of the proposed approach to estimate the true resistivity from the 2-D apparent resistivity sounding data with high correlation. The proposed technique, when executed, appears to be computationally-efficient.
منابع مشابه
Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملControllers Optimization for a Fluid Mixing System Using Metamodelling Approach
Abstract Offline optimization of controller parameters for complex non-linear processes can be time consuming, even with high performance computers. This paper demonstrates how Metamodelling techniques can be utilized to quickly tune the controller parameters for a nonlinear process. The process used in this study is the mixing process which is a multivariable and intrinsically non-linear plant...
متن کاملNumerical assessment of metamodelling strategies in computationally intensive optimization
Metamodelling is an increasingly more popular approach for alleviating the computational burden associated with computationally intensive optimization/management problems in environmental and water resources systems. Some studies refer to the metamodelling approach as function approximation, surrogate modelling, response surface methodology or model emulation. A metamodel-enabled optimizer appr...
متن کاملImpact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic
This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کامل